Simulation of Time Series by Distorted Gaussian Processes
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Distorted stationarv gaussian processes can be used to provide computer-generated
imitations of experimental time series. A method of analvzing a source time series and
svuthesizing an imitation is shown, and an example using X-band radiometer data is given.

. Motivation

The simulation technique described here was motivated by
the problem of weather-induced degradation of X- and
K-band communication. A sequence of X-band noise tempera-
ture measurements is being gathered at Deep Space Station 13
(Goldstone): it is desired to use these data to study the effects
of weather fluctuations on space communication. One can, for
example, predict the percentage of time (out of a given
year-quarter, for example) that the noise temperature exceeds
a given level, but then no information about the variation of
noise temperature with time is used. To study the effect of
these fluctuations, one would like to have typical samples of
noise temperature data to serve as inputs to communication
system models. Computer-generated pseudorandom synthetic
data have advantages over the real data, provided that the
synthetic data preserve essential features of the real data. Such
synthetic data can be controlled simply by changing param-
eters. As much (and only as much) data as needed can be
generated. It is free of the inevitable bugs that infect the
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data-gathering process (but see Sections V and VI). Moreover,
the synthetic data are more random than the original data, in
the sense that the original data, once gathered and plotted, are
known, whereas the exact course of the synthetic data is not.
To change the sample function entirely, one need only start
the program’s pseudorandom-number generator at a different
place. As M. Easterling put it, the real data are never tvpical. !

The noise temperature data are nowhere near gaussian.
(Fig. 1.) This makes them more difficult to simulate. They
motivate the search for a general-purpose simulation method,
one that can be used to imitate a wide variety of time series.
The method used here is: generate a stationary gaussian
process having certain correlations, and distort it by a
zero-memory nonlinearity so that the result has a desired
marginal distribution. The problem is how to choose the
correlations.
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Il. Ideas Leading to Present Method

We wish to produce a random process Y, Y,,... that in
some way imitates a source time series ¥, ¥, ..., Vy. There
are two broad questions: :

(1) What statistical properties of the y; are to be
duplicated?

(2) What class of processes shall the Y, belong to?

The answers to these two questions depend on each other,
of course. Let us start with some tentative answers: The
process (Y;) is stationary. Its marginal distribution function

P {Yl. <y}
and a certain number of correlations

p(Y.,YI.H), t=1ton
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agree with the sample distribution function and correlations of
the source series. This leads to another question: Is there a
stationary process having arbitrary prescribed marginal dis-
tribution function F (with finite second moment) and (non-
negative definite) correlation function A; to A, ? (Here, A, is
the correlation for lag ¢.) The answer is quickly no, for if the
distribution described by F' is not symmetric about its mean?,

then there is a number A, ;, = - 1 such that

p (Y, ¥,)=2

min

for any random variables Y. Y, whose marginal distributions
are both F. For such F| the A, cannot be allowed to get too
close to -1. Given F. then, there is a set C of permissible
correfation sequences (A,...., A,). However, it is unlikely,
perhaps even impossible, that the sample correlations of (v;)
fall outside C. for the sample distribution function F. So far,
the proposed answer to questions (1) and (2) seems feasible.

[t is time to restrict the answer to (2) to a class of processes
that are easy to generate to order. We say that (Y;) is a
stationary distorted gaussian process if, for some function g,

V=8 (X)), (1)

where X, X,.... s a stationary standard (mean 0, variance
1) gaussian process. The function g can be chosen to give the

2We owe this observation to E. Rodemich.

Y; any desired marginal distribution function F. In fact, we

can take

gx)=F~1 (2 (), (2)

where F~! is the (generalized) inverse of F, and ® is the
standard gaussian distribution function. Then g is nondecreas-
ing. There is an invertible function Ag such that the corre-
lations A, of the Y are related to the correlations p, of the X; by

X = A, 0,) (3)

(Ref. 1). The program now appears to be: Given a distribution
function F and a correlation sequence (A, ....7,)in Cp, let

pt=Ag71 (A, t=1ton (4)

Construct a stationary standard gaussian process (X;) with
correlations p, to p,,. Then the Y, have the desired marginal /¥
and correlations A,.

A program similar to this was carried out by Posner and
Zeigler (Ref. 2), using g (x) = x| (not a monotonic function),
and specifying two nonnegative correlations A,, A,. They
noted that they had not proven that any (nonnegative) (A,
A,) in Cp (where F is the distribution function of a
“half-gaussian™) can be reached by Eq. (3), where p,, p, are
the correlations of a gaussian process. This same question must
be asked of the general program above. Another way to put it
is: Given (A,,..., 7)) in Cp, define (p,.....p,) by Eq. (4),
and let p_, = p,. Is the sequence

nonnegative definite? If it is not, the process (X;) does not
exist.

E. Rodemich found a counterexample that shows that the
program fails in general. Consider the three-point sample space
{1, 2, 3}, with P {i}=1/3. Fori, = 1 to 3,let ¥, (w) =/2 if
w=1iand Y; (w)=- 1/4/2 otherwise. Then Y, is standard, and
EY;Y; = -4 if i #j. Suppose that X', X,. and X are jointly
gaussian with standard marginals, and that g is a function such
that g(X,), g(X,), g(X;) have the same marginals and
correlations as the Y,. Then with probability 1. g (X;) only
takes values v/2 and - 1/+/2, and

g(X)+g (X)) +g(X))=0 (5)
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Let A = {x:g (x) = \/2}. Then P {X;eA} = 1/3. The rank of
the distribution of (X, X,. X3) must be 1, for suppose, say,
that (X,, X,) had a density. Then P{X;e A, X, A} >0,
which is impossible, for if X, takes a value in 4, then Eq. (5)
implies that X, does not. On the other hand, if the rank is 1,
then X, = £X,, X5 = £X,: therefore at least two of the X are
equal, which is again impossible. The process (¥,) cannot be
simulated by a stationary distorted Gaussian process. Notice,
however, that we used a process instead of a time series for
this example. The finite time series

N Q-1 =121 -1, ... 1) (6)

won’t work for the example unless correlations are computed
cyclically, which we don’t want to do. We conjecture that the
sample distribution and correlations of any finite time series
can be obtained by a stationary distorted Gaussian process.

For the time being. we are stepping around the problem,
instead of surmounting it. One can always specify the
correlations of a gaussian process, as long as they are
nonnegative definite. Therefore, let us take the source time
series ()7;). measure its sample distribution function £ and use
F to compress the v; into a time series (x;) whose sample
distribution function is approximately ®. In fact, let

=g L) =T G, (7)

Measure the sample correlations p, ... .. p, of the x,. These
will be nonnegative definite (it defined correctly), so a
gaussian process (X;) can be generated having these correla-
tions. Finally, use Eq. (1) to expand the X, into a process ()
whose marginal distribution approximately equals the sample
distribution of the ;. Moreover, when (Y;) and (y;) are
compressed by ¢! to (X;) and (x;). respectively. the correla-
tions of the X; equal the sample correlations of the x,. Note
that (X;) is a true gaussian process. whereas the most that can
be said about the x; is that their sample distribution is
approximately gaussian.

lll. Analysis of Source Time Series

The sample distribution tunction of the source time series
AP 1y is given by

F ()= (number of p, <y)/N.

A binsort of the data will vield the values of # at the bin
boundaries. I one agrees (o interpolate F linearly between the
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boundaries, then Eq. (7) yields a sequence (x;) whose sample
distribution function is a step-function approximation to ®.
To make this approximation good, the jumps of F should be
small, and the bin boundaries close enough together to allow
linear interpolation. In implementing Eq. (7), it is also a good
idea to truncate ® ! at 4 and -4, say. This avoids the
possibility of the linear interpolation producing grossly over-
size x; for those y; that are very close to the maximum bin
boundary.

One computes the sample mean, covariances, and correla-
tions of the x;:

p=(1/N) Zx,.

N-t

re= (UN) 20 (- ) (3, - ),
i=1

pt:rr/ro. t=0ton.

If the previous work was done well, u should be close to 0,
and r, to 1. The p, are guaranteed to be nonnegative definite.

The functions F and p serve as inputs to the synthesis
algorithm given in the next section.

IV. Synthesis of Artificial Time Series

We are given tabulated values of a distribution function F.
and a sequence of correlations p,. p,.. ... 0, where p, = 1.

The main job is to generate a stationary standard gaussian
process X, X' ... . such that

I:lY[.XI.HZpI. t=0ton.

Then the process Y, Y ... . that we seek is given by
.
Y, = F7H (@ (X)), (8)

where F~! is executed by linear interpolation in the F-table.
Here is an algorithm that generates the X, as an autoregres-
sive scheme. Let Z,. Z,.... be a sequence of independent

standard gaussians. Execute the following steps in order:

Step 0. Set



Step i, i =1 to n. Set

j=0
i1
Ci].:—Zakck]., j=0toi-1
ke
= l
Hi
-
X =gz - X 9
70
Step i, i > n. Set
n-1
X;= \/5:1121‘ -2 i X ot (10)
j=0

This algorithm constructs a lower triangular matrix € = (cij)
and a nonnegative diagonal matrix G = diag 8o+ - --.&,)such
that CRCT = G, where R = (p;_;). with p_. = p,. The vectors
(a;) are the rows of C~ 1.

The algorithm goes through if and only if R is nonnegative
definite and has rank n or n+1. Otherwise, the algorithm will
run into a negative g,. in which case R is indefinite, or a &n =0
for some m < n, in which case R,, = (pl»fj: Lj=0tom)is
nonnegative definite and singular, and the full matrix R may
or may not be nonnegative definite.

The synthesis procedure has been realized in a documented
MBASIC program TSS (Time Series Synthesis).

V. Example

Figure I shows a plot of X-band noise temperature
measurements made by a radiometer at the Goldstone DSCC
from Day 207 to Day 214 of 1976. The data have pre-
processed so that they represent noise temperature above
quiescent as seen at zenith. The data come once every two
minutes, but the plot samples them only once every 20
minutes. The gaps indicate missing data; the program that
computes correlations maintains the correct time relationships

among the rest of the data. The sharp negative peaks are
caused by equipment malfunction; nevertheless, for the
purpose of this exercise, they were not excised.

Figure 2 shows five weeks worth of output of the Time
Series Synthesis program, whose inputs were the distribution
function and correlations obtained by the procedure of
Section III from the data of Fig. 1. Only the correlations
Paok mins k& = 1 to 13, were used; thus the order n of the
autoregression is 13, and the output of the program represents
20-minute samples.

VI. Remarks

Comparing Figs. 1 and 2, we see that the synthesis program
does produce sharp irregular peaks resembling those of the
source data. The peaks of the synthetic data seem to be more
clumped together than those of the source data, and the quiet
periods of the synthetic data are noisier than those of the
source. The spurious negative peaks of the source cause
strange-looking clumps of negative excursions in the synthetic
data. Obviously, bad points should be removed when putting a
time series through the analysis procedure; alternatively, the
distribution function can be fixed before giving it to the
synthesis program.

Some objections to the technique come to mind.

First, there is no objective criterion for acceptance of the
output of the synthesis program. It does have certain statistical
properties in common with the source time series, the ones it
was designed to have, but other than that, one can perhaps
only ask whether it “looks right.”

The second objection applies to radiometer data. The
important features of Fig. I are the large positive peaks, for
during these periods, X-band communication is considerably
degraded. This time series is severely compressed by Eq. (7)
into a gaussian mold; the peaks become insignificant and can
affect the correlations of the compressed series only very little.
Most of the information in the correlations comes {rom the
uninteresting quiet periods. Yet, these correlations strongly
affect the peaks of the synthetic data. Perhaps this is why the
peaks of the synthetic data tend to come in clumps. Actually,
the peaks of the source data are probably caused by
phenomena (clouds or rain) that are independent of the
phenomena that cause the small fluctuations of the quiet
periods. We may be fooling ourselves if we treat these data as a
single time series.

Third, it has been objected that the compression-plus-

correlation technique requires that the source time series be
saved in case one wants to improve the distribution function
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and correlations by using additional source series. As an
illustration, consider two source series y,,..., ¥y and
y'l, R y}v of the same length, which give rise to compressed
series (x;) and (x;), distribution functions F and F', and
correlations p and p'. The distribution function of the
combined source series is £ = (F + F')/2. One should use F"'
to compress ¥, ..., ¥y, V.. - -, Vy t0 aseries

123 "
X[ ....,Xy —gap—x

LA 1

N+ XaNe

Then the correlation function p'" of the x; would be
computed. However, this may not be necessary. The x; and x;
series both have an approximately gaussian sample distribu-
tion; it seems reasonable to use the series

) =0, Xy —gap — X, X))

in place of (x;') for computing the new correlations. If the
sample means and variances of (x;) and (x;) are close to 0 and
1, respectively, then the sample correlation of (x}"") is close to

(o + p/2. In this case, it is sufficient to save only F and p,
instead of the source series.

Finally, it must be admitted that the idea of computing
correlations after compressing is an expediency created to
dodge a difficult mathematical problem, the relationship
between marginals and correlations for nongaussian processes
and finite time series. In fact, the dodge itself may be illusory;
our “‘gaussian correlation” technique will not work at all well
on the time series of Eq. (6). But this time series comes from
the very counterexample which we used as an excuse to go to
the gaussian correlation technique. Perhaps what we are really
dodging is the numerical evaluation of A,~! in Eq. (4). More
mathematical effort is needed to clarify the situation. In the
meantime, the present method works in practice.

The conjecture that appears after (6) is false. Provided that
(6) is long enough, no stationary distorted gaussian process
with nondecreasing distortion function g can have the same
distribution and correlations as (6). This fact makes the
compression-plus-correlation technique more attractive, for we
can guarantee that the analysis and synthesis procedures can
be carried out, whatever the source time series (y;). However,
for pathological examples such as (6), the sample distribution
function of the compressed series (x;) will not be close to .
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Fig. 1. One week of X-band radiometer data
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Fig. 2. Five weeks of synthetic data
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